GCE

Chemistry A

H432/01: Periodic table, elements and physical chemistry

A Level

Mark Scheme for June 2023

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

MARKING INSTRUCTIONS

PREPARATION FOR MARKING

RM ASSESSOR

1. Make sure that you have accessed and completed the relevant training packages for on-screen marking: RM Assessor Online Training; OCR Essential Guide to Marking.
2. Make sure that you have read and understood the mark scheme and the question paper for this unit.
3. Log-in to RM Assessor and mark the required number of practice responses ("scripts") and the required number of standardisation responses.

MARKING

1. Mark strictly to the mark scheme.
2. Marks awarded must relate directly to the marking criteria.
3. The schedule of dates is very important. It is essential that you meet the RM Assessor 50\% and 100\% (traditional 50\% Batch 1 and 100\% Batch 2) deadlines. If you experience problems, you must contact your Team Leader (Supervisor) without delay.
4. If you are in any doubt about applying the mark scheme, consult your Team Leader by telephone, email or via the RM Assessor messaging system.
5. Work crossed out:

Crossed Out Responses

Where a candidate has crossed out a response and provided a clear alternative then the crossed out response is not marked. Where no alternative response has been provided, examiners may give candidates the benefit of the doubt and mark the crossed out response where legible.

Rubric Error Responses - Optional Questions

Where candidates have a choice of question across a whole paper or a whole section and have provided more answers than required, then all responses are marked and the highest mark allowable within the rubric is given. Enter a mark for each question answered into RM assessor, which will select the highest mark from those awarded. (The underlying assumption is that the candidate has penalised themselves by attempting more questions than necessary in the time allowed.)

Multiple Choice Question Responses

When a multiple choice question has only a single, correct response and a candidate provides two responses (even if one of these responses is correct), then no mark should be awarded (as it is not possible to determine which was the first response selected by the candidate).
When a question requires candidates to select more than one option/multiple options, then local marking arrangements need to ensure consistency of approach.

Contradictory Responses

When a candidate provides contradictory responses, then no mark should be awarded, even if one of the answers is correct.
Short Answer Questions (requiring only a list by way of a response, usually worth only one mark per response)
Where candidates are required to provide a set number of short answer responses then only the set number of responses should be marked. The response space should be marked from left to right on each line and then line by line until the required number of responses have been considered. The remaining responses should not then be marked. Examiners will have to apply judgement as to whether a 'second response' on a line is a development of the 'first response', rather than a separate, discrete response. (The underlying assumption is that the candidate is attempting to hedge their bets and therefore getting undue benefit rather than engaging with the question and giving the most relevant/correct responses.)

Short Answer Questions (requiring a more developed response, worth two or more marks)
If the candidates are required to provide a description of, say, three items or factors and four items or factors are provided, then mark on a similar basis - that is downwards (as it is unlikely in this situation that a candidate will provide more than one response in each section of the response space.)

Longer Answer Questions (requiring a developed response)

Where candidates have provided two (or more) responses to a medium or high tariff question which only required a single (developed) response and not crossed out the first response, then only the first response should be marked. Examiners will need to apply professional judgement as to whether the second (or a subsequent) response is a 'new start' or simply a poorly expressed continuation of the first response.
6. Always check the pages (and additional objects if present) at the end of the response in case any answers have been continued there. If the
candidate has continued an answer there then add a tick to confirm that the work has been seen.
7. There is a NR (No Response) option. Award NR (No Response)

- \quad if there is nothing written at all in the answer space
- OR if there is a comment which does not in any way relate to the question (e.g. 'can't do', 'don't know')
- OR if there is a mark (e.g. a dash, a question mark) which isn't an attempt at the question.

Note: Award 0 marks - for an attempt that earns no credit (including copying out the question).
8. The RM Assessor comments box is used by your Team Leader to explain the marking of the practice responses. Please refer to these comments when checking your practice responses. Do not use the comments box for any other reason.

If you have any questions or comments for your Team Leader, use the phone, the RM Assessor messaging system, or email.
9. Assistant Examiners will send a brief report on the performance of candidates to their Team Leader (Supervisor) via email by the end of the marking period. The report should contain notes on particular strengths displayed as well as common errors or weaknesses. Constructive criticism of the question paper/mark scheme is also appreciated.
10. For answers marked by levels of response:

Read through the whole answer from start to finish, using the Level descriptors to help you decide whether it is a strong or weak answer. The indicative scientific content in the Guidance column indicates the expected parameters for candidates' answers, but be prepared to recognise and credit unexpected approaches where they show relevance. Using a 'best-fit' approach based on the skills and science content evidenced within the answer, first decide which set of level descriptors, Level 1, Level 2 or Level 3, best describes the overall quality of the answer.

Once the level is located, award the higher or lower mark:
The higher mark should be awarded where the level descriptor has been evidenced and all aspects of the communication statement (in italics) have been met.

The lower mark should be awarded where the level descriptor has been evidenced but aspects of the communication statement (in italics) are missing.

In summary:

The skills and science content determines the level.
The communication statement determines the mark within a level.
Level of response questions on this paper are 17 and 22a
The only annotation on a level of response question should be the indication of the level.
A level annotation should be used where all marks for a level have been achieved.
e.g. if a candidate has 6 marks, they would have this annotation on their script:

If a candidate has achieved 5 marks then they have reached Level 3 but will not have met the communication statement.
They should have the following annotations on their scripts:
\qquad
The same principle should be applied to Level 2 and Level 1.
No marks (0) should have a cross: \square
Place the annotations alongside the mark for the question.
On additional pages, annotate using SEEN
11. Annotations available in RM Assessor

Annotation	Meaning
Correct response	
\boldsymbol{A}	Incorrect response
BOD	Omission mark
CON	Benefit of doubt given
$\mathbf{R E}$	Contradiction
SF	Rounding error
ECF	Error in number of significant figures
L1	Error carried forward
L2	Level 1
L3	Level 2
NBOD	Level 3
SEEN	Benefit of doubt not given
I	Noted but no credit given
BP	Ignore

12. Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

Annotation	Meaning
DO NOT ALLOW	Answers which are not worthy of credit
IGNORE	Statements which are irrelevant
ALLOW	Answers that can be accepted
()	Words which are not essential to gain credit
-	Underlined words must be present in answer to score a mark
ECF	Error carried forward
AW	Alternative wording
ORA	Or reverse argument

13. Subject-specific Marking Instructions

INTRODUCTION

Your first task as an Examiner is to become thoroughly familiar with the material on which the examination depends. This material includes:

- the specification, especially the assessment objectives
- the question paper
- the mark scheme.

You should ensure that you have copies of these materials.
You should ensure also that you are familiar with the administrative procedures related to the marking process. These are set out in the OCR booklet Instructions for Examiners. If you are examining for the first time, please read carefully Appendix 5 Introduction to Script Marking: Notes for New Examiners.

Please ask for help or guidance whenever you need it. Your first point of contact is your Team Leader.

SECTION A

Question	Answer	Marks	AO element	Guidance
1	B	1	AO1.2	
2	C	1	AO2.2	
3	D	1	AO2.2	
4	C	1	AO2.2	
5	A	1	AO1.1	
6	A	1	AO1.2	
7	D	1	AO1.2	
8	D	1	AO1.1	
9	B	1	AO2.2	
10	D	1	AO2.6	
12	D	1	AO2.3	
13	B	1	AO2.6	
14	D	1	AO1.2	
15	B	1	AO1.2	
		1	AO2.1	

SECTION B

Question		Answer	Marks	AO element	Guidance
	(ii)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer = -1872 award 2 marks $\begin{aligned} & \Delta H \text { lattice }= \\ & 2(+296)-965-503-180+2(-107)-602 \\ & \Delta H \text { lattice }=-1872\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \checkmark \end{aligned}$	2	$\begin{gathered} \mathrm{AO} 2.2 \\ \times 2 \end{gathered}$	ALLOW for 1 mark +1872 (wrong sign on answer) Common errors for 1 mark $\begin{aligned} & -3056(-296 \times 2 \text { instead of } 296 \times 2) \\ & -2168(296 \times 1 \text { instead of } 296 \times 2) \\ & -1765(-107 \times 1 \text { instead of }-107 \times 2) \\ & -1512(180 \text { instead of }-180) \\ & -1444(107 \times 2 \text { instead of }-107 \times 2) \\ & -866(503 \text { instead of }-503) \\ & -668(602 \text { instead of }-602) \\ & +58(965 \text { instead of }-965) \end{aligned}$ For other answers, check for a single transcription error or calculation error which could merit 1 mark if all values have been used. DO NOT ALLOW any answer which involves two errors
(b)		Ist IE of $\mathbf{M g}$ and $\mathbf{S r}$ (Mg) removes electron from shell closer to the nucleus / smaller atomic radius \checkmark Greater nuclear attraction (between atom and outer electron) \checkmark	4	AO1.1 AO1. 2 AO1.1 AO1. 2	ORA throughout ALLOW going down the group for comparison of $\mathrm{Mg} / \mathrm{Sr}$ Assume 'it' means Mg ALLOW (Mg) fewer shells ALLOW less shielding ALLOW removal of electron from 3 s rather than 5 s ALLOW Greater attraction between nucleus (and outer electron)

Question	Answer	Marks	$\begin{gathered} \text { AO } \\ \text { element } \end{gathered}$	Guidance
	2nd/1st IE of Sr $2^{\text {nd }}$ electron removed from cation/positively charged ion OR proton:electron ratio (in (1)+ ion) is greater (than in atom) \checkmark Greater nuclear attraction / attraction between ion (and outer electron) \checkmark			ALLOW Sr+ ion smaller (than Sr atom) ALLOW same number of protons/nuclear charge attracting one fewer electron IGNORE repulsion between electrons in the s orbital IGNORE shielding

Question		Answer	Marks	AO element	Guidance

	uest		Answer	Marks	AO element	Guidance
19	(a)	(i)	$\left(K_{\mathrm{p}}\right)=\frac{\mathrm{p}\left(\mathrm{~N}_{2} \mathrm{O}_{4}(\mathrm{~g})\right)}{\mathrm{p}\left(\mathrm{NO}_{2}(\mathrm{~g})\right)^{2}} \downarrow$	5	$\begin{gathered} \mathrm{AO} 1.2 \\ \times 1 \end{gathered}$	ALLOW species without state symbols and without brackets. $\text { e.g., } \mathrm{pSO}_{3}^{2}, \mathrm{ppSO}_{3}^{2}, \mathrm{PSO}_{3}^{2}, \mathrm{p}\left(\mathrm{SO}_{3}\right)^{2}$ $\left(\mathrm{pSO}_{3}\right)^{2} \text { etc. }$ DO NOT ALLOW square brackets
			Units atm $^{-1} \checkmark$		$\begin{gathered} \text { AO1.2 } \\ \times 1 \end{gathered}$	ALLOW atm as ECF if K_{p} is upside down
			CHECK THE ANSWER ON ANSWER LINE if answer $=1.17 \times 10^{-2}$ OR 1.18×10^{-2} award 3 calculation marks			
			Calculation - $n \mathrm{~N}_{2} \mathrm{O}_{4}=0.3(00)(\mathrm{mol})$ AND ntotal $=5.7(0)(\mathrm{mol}) \checkmark$		$\begin{gathered} \mathrm{AO} 2.6 \\ \times 3 \end{gathered}$	ALLOW ECF throughout ALLOW 3 SF up to the calculated value. IGNORE RE after 3SF
			- $\quad \mathrm{pNO}_{2}=\left(\frac{5.4(0)}{5.7(0)} \times 5.00=\right) 4.74(\mathrm{~atm})$			Calculator value $\begin{aligned} & p \mathrm{NO}_{2}=4.7368 \ldots \ldots \\ & p \mathrm{~N}_{2} \mathrm{O}_{4}=0.26315 \ldots . \end{aligned}$
			$\text { AND } p \mathrm{~N}_{2} \mathrm{O}_{4}=\left(\frac{0.3(00)}{5.7(0)} \times 5.00=\right) 0.263(\mathrm{~atm}) \checkmark$ - $\quad K_{\mathrm{p}}$ to 3 SF			Mark use of 2SF in working as incorrect once and then allow ECF Answer MUST be 3 SF
			$\left(K_{p}=\frac{0.263}{4.74^{2}}=\right) 1.17 \times 10^{-2} \checkmark$			Common error for 2 calculation marks: $2.47 \times 10^{-2}\left(\text { using } 0.6 \mathrm{~mol} \mathrm{~N}_{2} \mathrm{O}_{4}\right)$

Question	Answer	Marks	$\begin{array}{\|c\|} \hline \text { AO } \\ \text { element } \end{array}$	Guidance
				Use of $\mathbf{2 4} \mathbf{d m}^{\mathbf{3}}$: Final 2 marks possible by ECF $\text { e.g. } n=\frac{74.0}{24000}=3.08 \times 10^{-3}$ No mark (calculation much simpler) $M=\frac{0.28}{3.08 \times 10^{-3}}=90(.8)$ ECF $\mathrm{N}_{3} \mathrm{O}_{3}$ ECF DO NOT ALLOW $\mathrm{N}_{2} \mathrm{O}_{4}$ (in question) ALLOW ECF matching calculated M

Question			Answer FIRST CHECK THE ANSWER ON ANSWER LINE if answer $=6.77$ award 2 marks $\begin{aligned} & K_{\mathrm{w}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right] \text {OR } K_{\mathrm{w}}=\left[\mathrm{H}^{+}\right]^{2} \text { OR }\left[\mathrm{H}^{+}\right]=\sqrt{ } \mathrm{K}_{\mathrm{w}} \checkmark \\ & \left(\left[\mathrm{H}^{+}\right]=\sqrt{ }\left(2.92 \times 10^{-14}\right)\right) \\ & \mathrm{pH}=-\log \left(1.71 \times 10^{-7}\right)=6.77 \checkmark \end{aligned}$	Marks	AO element	Guidance
20	(a)	(i)		2	$\begin{gathered} \mathrm{AO} 1.1 \\ \times 1 \\ \\ \mathrm{AO} 2.2 \\ \times 1 \end{gathered}$	DO NOT ALLOW use of A^{-}or X^{-}
		(ii)	(In pure water), $\left[\mathrm{H}^{+}\right]$(always) equals [OH^{-}]	1	$\begin{gathered} \mathrm{AO} 3.2 \\ \times 1 \end{gathered}$	ALLOW moles/number of H^{+}is (always) equal to moles/number of OH^{-}. DO NOT ALLOW ratio $\left[\mathrm{H}^{+}\right]$: $\left[\mathrm{OH}^{-}\right]$doesn't change
	(b)		- Equation $\mathrm{Sr}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Sr}(\mathrm{OH})_{2}+\mathrm{H}_{2} \checkmark$ CHECK THE ANSWER ON ANSWER LINE if answer = 11.51 award 4 calculation marks $\text { - } \begin{aligned} & n\left(\mathrm{Sr}(\mathrm{OH})_{2}\right) \\ = & \frac{0.145}{121.6}=1.1924 \ldots \times 10^{-3} \end{aligned}$ - [OH^{-}] $\begin{aligned} \quad=2 \times & \left(1.1924 \times 10^{-3} \div 0.25\right)=9.539 \ldots \times 10^{-3} \checkmark \\ \bullet \quad\left[\mathrm{H}^{+}\right] & =K_{w} \div\left[\mathrm{OH}^{-}\right] \\ & =\frac{2.92 \times 10^{-14}}{9.539 . . \times 10^{-3}}=3.061 \ldots \times 10^{-12} \checkmark \end{aligned}$	5	AO2.6 AO2. 4 $\times 3$ AO1. 2 $\times 1$	IGNORE state symbols (even if wrong) ALLOW multiples ALLOW Sr ${ }^{2+}+2 \mathrm{OH}^{-}$for $\mathrm{Sr}(\mathrm{OH})_{2}$ ALLOW 3 SF up to the calculated value. Ignore RE after 3SF. ALLOW ECF throughout but final answer must be $\mathrm{pH}>7$

(c)	(i)	$\mathrm{SrCO}_{3}+2 \mathrm{HNO}_{3} \rightarrow \mathrm{Sr}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2} \checkmark$	1	AO2.6	IGNORE state symbols DO NOT ALLOW $\mathrm{H}_{2} \mathrm{CO}_{3}$ for $\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$ (question states that a gas was produced) ALLOW multiples
	(ii)	M_{r} of SrCO_{3} is different to $\mathrm{Mr}_{\mathrm{r}} \mathrm{CaCO}_{3}$ / moles SrCO_{3} are different to moles $\mathrm{CaCO}_{3} \checkmark$ M_{r} of $\mathrm{SrCO}_{3}>\mathrm{Mr}_{\mathrm{r}} \mathrm{CaCO}_{3} /$ moles SrCO_{3} < moles CaCO_{3} AND More moles/volume gas (from CaCO_{3}) \checkmark	2	AO3.1 $\times 1$ AO3.2 $\times 1$	ALLOW ORA ALLOW $\begin{aligned} & \mathrm{n}\left(\mathrm{SrCO}_{3}\right)=(1.00 \div 147.6)=6.78 \times 10^{-3} \\ & (\mathrm{~mol}) \\ & \text { AND } \\ & \mathrm{n}\left(\mathrm{CaCO}_{3}\right)=(1.00 \div 100.1)=9.99 \times 10^{-3} \\ & (\mathrm{~mol}) \end{aligned}$ For the 2nd mark, we are assessing the idea of the greater moles of carbonate produces more gas. Subsumes first mark ALLOW $\begin{aligned} & \mathrm{n}\left(\mathrm{SrCO}_{3}\right)=(1.00 \div 147.6)=6.78 \times 10^{-3} \\ & (\mathrm{~mol}) \\ & \text { AND } \\ & \mathrm{n}\left(\mathrm{CaCO}_{3}\right)=(1.00 \div 100.1)=9.99 \times 10^{-3} \\ & (\mathrm{~mol}) \\ & \text { AND } \\ & \begin{array}{l} \mathrm{Calculated} \text { values }\left(\mathrm{CO}_{2}\right) 163 \mathrm{~cm}^{3} \text { AND } 240 \\ \mathrm{~cm}^{3} \end{array} \end{aligned}$

(d)	(i)	$\mathrm{Mg}+2 \mathrm{H}^{+} \rightarrow \mathrm{Mg}^{2+}+\mathrm{H}_{2} \checkmark$	1	AO2.6	ALLOW multiples ALLOW Mg+2 IGNORE state symbols
	(ii)	HCl is a strong acid/completely dissociates AND $\mathrm{CH}_{3} \mathrm{COOH}$ is a weak acid/partially dissociates \checkmark Greater H^{+}concentration in HCl AND More frequent collisions / faster rate of reaction \checkmark More $\mathrm{CH}_{3} \mathrm{COOH}$ dissociates until same number of moles of H^{+}released OR same total moles H^{+}produced (by the end) OR (Both acids are monobasic) and have the same number of moles of acid \checkmark	3	A01.1 $\times 1$ AO3.1 $\times 2$	IGNORE HCl is a stronger acid than ethanoic acid. ALLOW ORA DO NOT ALLOW dibasic/tribasic
(e)	(i)	One mole of (butanoic) acid donates/dissociates to form one mole of protons $/ \mathrm{H}^{+}$	1	A01.1	ALLOW One molecule of (butanoic) acid donates/dissociates to form one proton/ H^{+} ALLOW only one hydrogen ion in the acid can be replaced per molecule (in an acidbase reaction)
	(ii)	FIRST CHECK THE ANSWER ON ANSWER LINE IF ANSWER $=1.5(3) \times 10^{-5}$ award 4 marks	4	$\begin{gathered} \mathrm{AO} 1.2 \\ \times 1 \end{gathered}$	FULL ANNOTATIONS MUST BE USED ALLOW ECF throughout

| (f) | ratio/proportion $[\mathrm{HA}] /[\mathrm{A}-]$ is the same | $\mathbf{1}$ | AO3.1 | ALLOW Change in [HA] and [A-] is
 proportional |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| ALLOW the concentrations of the weak acid
 and conjugate base change by same
 amount | | | | |

	uest	Answer	Marks	AO element	Guidance
22	(a)	Please refer to the marking instructions on page 5 of this mark scheme for guidance on how to mark this question. Level 3 (5-6 marks) Explains the terms 'd-block element' AND 'transition element' AND Explains why not all d-block are transition elements AND At least THREE correct electron configurations (need to be one electron configuration of d block atom, transition element ion and zinc (or scandium) ion There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3-4 marks) Explains both the terms 'd-block element' and 'transition element' AND Explains why not all d-block are transition elements OR Explains both the terms 'd-block element' and 'transition element' AND Links terms to at least TWO correct electron configurations OR Explains the terms 'd-block element' OR 'transition element' AND Explains why not all d-block are transition elements AND Links terms to at least ONE correct electron configuration	6	AO1.1 $\times 4$ AO1.2 $\times 2$	Indicative scientific points may include: Terms d-block element: element with highest energy/ valence electron in d-orbital/sub-shell OR d subshell is being filled DO NOT ALLOW d block for d-subshells Transition element: element forming one or more ions (allow atom and ion - IUPAC definition) with incomplete/partially filled d-subshell/dorbitals DO NOT ALLOW d shell d-block element: ALLOW examples with an ion with an incomplete d-subshell, e.g. $\mathrm{Fe}^{2+}-[\mathrm{Ar}] 4 \mathrm{~s}^{0} 3 \mathrm{~d}^{6}$ ALLOW examples with highest energy electrons in a d-subshell, e.g. Fe - [Ar] $4 \mathrm{~s}^{2} 3 \mathrm{~d}^{6}$ Not all d-block are transition elements: Sc and Zn form ions with complete or empty d shells ORA For Sc^{3+}, ALLOW Sc^{+3} OR Sc forms a $3+$ ion For Zn^{2+}, ALLOW Zn^{+2} OR Zn forms a $2+$ ion $\mathrm{Sc}^{3+} 1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 p^{6} 3 s^{2} 3 p^{6}$ Sc^{3+} AND d subshell empty / d orbital(s) empty $\mathrm{Zn}^{2+} 1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 p^{6} 3 \mathrm{~s}^{2} 3 \mathrm{p}^{6} 3 \mathrm{~d}^{10}$ Zn^{2+} AND d subshell full / ALL d orbitals full

Question	Answer	Marks	AO element	Guidance
	There is a line of reasoning presented with some structure. The information presented is relevant and supported by some evidence. Level 1 (1-2 marks) Explains the term 'd-block element' OR 'transition element' AND Attempts to link terms with ONE correct electron configuration OR Explains the term 'd-block element' AND 'transition element' OR Explains the term ' d -block element' $\mathbf{O R}$ 'transition element' AND Explains why not all d-block are transition elements OR Any TWO out of THREE correct electron configurations (one element and one ion that is a transition element and one ion that is not a transition element) There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant. 0 marks No response or no response worthy of credit			ALLOW minor slips on inner shell electron configurations NOTE: A clear and logically structured response would link definitions to electron configurations to support the explanations. If stated, for the level, there should be clear indication that the d subshell is full/empty or partially full

Question		Answer	Marks	AO element	Guidance
(b)	(ii)	Ligand substitution with $\mathrm{NH}_{3} / \mathrm{Cl}^{-}$ 2 marks $\begin{aligned} & \frac{\mathbf{N H}_{3} \text { Deep/dark/royal blue (solution) }}{\text { AND }\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2+} \checkmark} \\ & {\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+4 \mathrm{NH}_{3} \rightarrow\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2+}+4 \mathrm{H}_{2} \mathrm{O}} \end{aligned}$ OR $\mathbf{C l}$ - yellow (solution) AND $\left[\mathrm{CuCl}_{4}\right]^{2-}$ $\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+4 \mathrm{Cl} l^{-} \rightarrow\left[\mathrm{CuCl}_{4}\right]^{2-}+6 \mathrm{H}_{2} \mathrm{O} \checkmark$ Cr Ligand substitution with NH_{3} 2 marks NH_{3} Purple (solution) AND $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$ $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}+6 \mathrm{NH}_{3} \rightarrow\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}+6 \mathrm{H}_{2} \mathrm{O} \checkmark$ OR Dark Green (solution) AND $\left[\mathrm{Cr}(\mathrm{OH})_{6}\right]^{3-}$ $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}+6 \mathrm{OH}^{-} \rightarrow\left[\mathrm{Cr}(\mathrm{OH})_{6}\right]^{3-}+6 \mathrm{H}_{2} \mathrm{O} \checkmark$	2	A01.1 AO1.2	ALLOW other correct equations linked to correct colour change -check with TL ALLOW ECF on any incorrect charges of the complex ions when linked to colour via an equation.
(c)		Charge: $-1 \text { OR - OR } 1-\checkmark$ Coordination number: $6 \checkmark$	2	$\begin{gathered} \mathrm{AO} 1.2 \\ \times 2 \end{gathered}$	$\text { ALLOW }\left[\mathrm{Co}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{-}$ DO NOT ALLOW Co- IGNORE sign

Quest	Answer	Marks	$\begin{gathered} \text { AO } \\ \text { element } \end{gathered}$	Guidance
(d)	$3 \mathrm{~V}^{3+}+\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+2 \mathrm{H}^{+} \rightarrow 3 \mathrm{VO}_{2^{+}}+2 \mathrm{Cr}^{3+}+\mathrm{H}_{2} \mathrm{O}$ ALL reactant and product species correct Correct balancing (of correct equation) AND cancelling of species	2	$\begin{aligned} & \text { AO2.5 } \\ & \text { AO2.6 } \end{aligned}$	IGNORE Balancing and electrons for first mark DO NOT ALLOW electrons in final answer

Need to get in touch?

If you ever have any questions about OCR qualifications or services (including administration, logistics and teaching) please feel free to get in touch with our customer support centre.

Call us on
01223553998
Alternatively, you can email us on
support@ocr.org.uk
For more information visit

[]

ocr.org.uk/qualifications/resource-finder
(ocr.org.uk
f Twitter/ocrexams
3y locrexams
in /company/ocr

- locrexams

 UNVVRRTT PRESS \& ASSSSMENT

OCR is part of Cambridge University Press \& Assessment, a department of the University of Cambridge.
For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored. © OCR 2023 Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee. Registered in England. Registered office The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA.

Registered company number 3484466 . OCR is an exempt charity.
OCR operates academic and vocational qualifications regulated by Ofqual, Qualifications Wales and CCEA as listed in their qualifications registers including A Levels, GCSEs, Cambridge Technicals and Cambridge Nationals.

OCR provides resources to help you deliver our qualifications. These resources do not represent any particular teaching method we expect you to use. We update our resources regularly and aim to make sure content is accurate but please check the OCR website so that you have the most up-to-date version. OCR cannot be held responsible for any errors or omissions in these resources.

Though we make every effort to check our resources, there may be contradictions between published support and the specification, so it is important that you always use information in the latest specification. We indicate any specification changes within the document itself, change the version number and provide a summary of the changes. If you do notice a discrepancy between the specification and a resource, please contact us.

Whether you already offer OCR qualifications, are new to OCR or are thinking about switching, you can request more information using our Expression of Interest form.

Please get in touch if you want to discuss the accessibility of resources we offer to support you in delivering our qualifications.

