GCE

Chemistry A

H432/03: Unified chemistry

A Level

Mark Scheme for June 2023

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

MARKING INSTRUCTIONS

PREPARATION FOR MARKING

RM ASSESSOR

1. Make sure that you have accessed and completed the relevant training packages for on-screen marking: RM Assessor Online Training; OCR Essential Guide to Marking.
2. Make sure that you have read and understood the mark scheme and the question paper for this unit.
3. Log-in to RM Assessor and mark the required number of practice responses ("scripts") and the required number of standardisation responses.

MARKING

1. Mark strictly to the mark scheme.
2. Marks awarded must relate directly to the marking criteria.
3. The schedule of dates is very important. It is essential that you meet the RM Assessor 50\% and 100\% (traditional 50\% Batch 1 and 100\% Batch 2) deadlines. If you experience problems, you must contact your Team Leader (Supervisor) without delay.
4. If you are in any doubt about applying the mark scheme, consult your Team Leader by telephone, email or via the RM Assessor messaging system.
5. Work crossed out:
a. where a candidate crosses out an answer and provides an alternative response, the crossed out response is not marked and gains no marks
b. if a candidate crosses out an answer to a whole question and makes no second attempt, and if the inclusion of the answer does not cause a rubric infringement, the assessor should attempt to mark the crossed out answer and award marks appropriately.
6. Always check the pages (and additional objects if present) at the end of the response in case any answers have been continued there. If the candidate has continued an answer there then add a tick to confirm that the work has been seen.
7. There is a NR (No Response) option. Award NR (No Response)

- \quad if there is nothing written at all in the answer space
- OR if there is a comment which does not in any way relate to the question (e.g. 'can't do', 'don't know')
- OR if there is a mark (e.g. a dash, a question mark) which isn't an attempt at the question.

Note: Award 0 marks - for an attempt that earns no credit (including copying out the question).
8. The RM Assessor comments box is used by your Team Leader to explain the marking of the practice responses. Please refer to these comments when checking your practice responses. Do not use the comments box for any other reason.

If you have any questions or comments for your Team Leader, use the phone, the RM Assessor messaging system, or email.
9. Assistant Examiners will send a brief report on the performance of candidates to their Team Leader (Supervisor) via email by the end of the marking period. The report should contain notes on particular strengths displayed as well as common errors or weaknesses. Constructive criticism of the question paper/mark scheme is also appreciated.
10. For answers marked by levels of response:

Read through the whole answer from start to finish, using the Level descriptors to help you decide whether it is a strong or weak answer. The indicative scientific content in the Guidance column indicates the expected parameters for candidates' answers, but be prepared to recognise and credit unexpected approaches where they show relevance. Using a 'best-fit' approach based on the skills and science content evidenced within the answer, first decide which set of level descriptors, Level 1, Level 2 or Level 3, best describes the overall quality of the answer.

Once the level is located, award the higher or lower mark:
The higher mark should be awarded where the level descriptor has been evidenced and all aspects of the communication statement (in italics) have been met.

The lower mark should be awarded where the level descriptor has been evidenced but aspects of the communication statement (in italics) are missing.

In summary:
The skills and science content determines the level.
The communication statement determines the mark within a level.
Level of response questions on this paper are Q3 and Q6f.
The only annotation on a level of response question should be the indication of the level.
A level annotation should be used where all marks for a level have been achieved e.g. a candidate has 6 marks, so they would have this annotation on their script:
\qquad
If a candidate has achieved 5 marks then they have reached Level 3 but with one mark omitted. They should have the following annotations on their scripts:
\square
The same principle should be applied to Level 2 and Level 1.
No marks (0) should have a cross: \square
Place the annotations alongside the mark for the question.
On additional pages, annotate using SEE
11. Annotations available in RM Assessor

Annotation	Meaning
C	Correct response
A	Incorrect response
BOD	Omission mark
CON	Benefit of doubt given
RE	Contradiction
SF	Rounding error
ECF	Error in number of significant figures
L1	Error carried forward
L2	Level 1
L3	Level 2
NBOD	Level 3
SEEN	Benefit of doubt not given
I	Noted but no credit given

12. Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

Annotation	Meaning
DO NOT ALLOW	Answers which are not worthy of credit
IGNORE	Statements which are irrelevant
ALLOW	Answers that can be accepted
()	Words which are not essential to gain credit
-	Underlined words must be present in answer to score a mark
ECF	Error carried forward
AW	Alternative wording
ORA	Or reverse argument

13. Subject-specific Marking Instructions

INTRODUCTION

Your first task as an Examiner is to become thoroughly familiar with the material on which the examination depends. This material includes:

- the specification, especially the assessment objectives
- the question paper
- the mark scheme.

You should ensure that you have copies of these materials.
You should ensure also that you are familiar with the administrative procedures related to the marking process. These are set out in the OCR booklet Instructions for Examiners. If you are examining for the first time, please read carefully Appendix 5 Introduction to Script Marking: Notes for New Examiners.

Please ask for help or guidance whenever you need it. Your first point of contact is your Team Leader.

Question	Answer ${ }^{\text {a }}$ Marks $\begin{gathered}\text { AO } \\ \text { element }\end{gathered} \quad$ Guidance
	MARKING CALCULATIONS 1. Candidates are encouraged to round only at the end of multi-step calculations. 2. We are not assessing a candidate's ability to copy calculator values onto paper. Calculator values are usually taken forwards by candidates for the next step in calculations. 3. DO NOT penalise intermediate rounding errors on scripts when subsequent answers have obviously used calculator values. 4. Every response is different. Use the final answer to guide your marks and make use of intermediate values when the final answer is wrong. 5. Guidance will often include Common Errors which help with marking and obtaining consistency.
	ANNOTATIONS 1. Every mark awarded must be accompanied by a tick. If a calculation is correct and the mark scheme allocated all marks, add the same number of ticks alongside the answer. 2. It is good practice to show an annotation to every item. 3. RM3 suppled a useful set of annotations which help to show why you have decided on a mark. Please use them. 4. Every blank page should contain an annotation to show that you have seen them. 5. Linking: If you are unsure about how to link, contact your Team Leader for advice.

Question	Answe	Marks	AO	Guidance
1	ALLOW upper case when it is obvious, e.g. ALLOW CR for $\mathbf{C r}$, AS for As ALLOW names for elements			
(a)	THREE from: N O \mathbf{F} F H \checkmark	1	A01.1	DO NOT ALLOW ANY OTHER ELEMENTS (CON)
(b)	OV	1	AO2. 1	$\begin{aligned} & \text { ALLOW S } \\ & \text { BOD } \end{aligned}$
(c)	P OR S \checkmark	1	A01.1	ALLOW $\mathrm{S}_{8}, \mathrm{P}_{4}$ ALLOW As, Se
(d)	$\begin{aligned} & \mathrm{Cr} \checkmark \\ & \mathrm{Mn} \checkmark \end{aligned}$	2	AO1.2	IGNORE ions
(e)	Si \checkmark	1	A01.1	
(f)	S	1	AO2.1	ALLOW SF ${ }_{6}$
(g)	F ${ }^{\text {b }}$	1	A01.1	
(h)	As \checkmark	1	AO2.2	

Question			Answer	Marks	AO	Guidance
2	(a)	(i)	Rubidium chlorate(VII) \checkmark	1	A01.1	ALLOW Rubidium(I) chlorate(VII) Rubidium chloroate(VII) IGNORE Rubidium (VII)chlorate Rubidium chlorate(IIV) Rubidium chlorate (7) Rubidium perchlorate
		(ii)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer = 54.0 OR 54.1 OR $54.2\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ award 3 marks ```Energy change from \(m c \Delta T\) Energy in J OR kJ \(=102 \times 4.18 \times 1.5\) OR \(639.54(\mathrm{~J})\) OR \(0.63954(\mathrm{~kJ}) \checkmark\) Amount in mol of \(\mathrm{RbClO}_{3}\) \(n\left(\mathrm{RbClO}_{3}\right)=\frac{2.00}{169}\) OR 0.0118 \(\ldots \ldots . .(\mathrm{mol}) \checkmark\) \(\Delta_{\mathrm{sol}} \mathrm{H}\left(\mathrm{RbClO}_{3}\right)\) \(=\frac{0.63954}{0.0118 \ldots \ldots}=(+) 54.0 \checkmark\)``` From unrounded values, $\Delta H=54.04113$ Examples of mixed acceptable intermediate rounding, e.g. $\frac{0.640}{0.0118} \Delta H=54.237 \rightarrow 54.2$ $\frac{0.63954}{0.01183} \Delta H=54.06 \rightarrow 54.1$	3	$\begin{gathered} \mathrm{AO} 2.8 \\ \times 3 \end{gathered}$	ALLOW ECF throughout IGNORE sign IGNORE RE and SF in 1st 2 marks 0.01183431953 unrounded ALLOW 54 (from 54.0) CARE 54.00 is a rounding error COMMON ERRORS 52.98 OR 53.14 2 marks 100 instead of 102: $\text { Energy }=100 \times 4.18 \times 1.5=627 \mathrm{~J}$ From unrounded n, $\Delta H=\frac{0.627}{0.0118 \ldots . .}=\mathbf{5 2 . 9 8} \mathrm{kJ} \mathrm{~mol}^{-1}$ OR 53.0 (3SF) OR 53 From rounded 0.0118, $\Delta H=\frac{0.627}{0.0118}=53.14 \text { OR } 53.1$

Question	Answer	Marks	AO element	Guidance
(b)	FIRST CHECK THE ANSWER ON ANSWER LINE If range $=4.4 \times 10^{-5}-4.5 \times 10^{-5}\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ award 3 marks $\left[\mathrm{H}^{+}\right]=10^{-1.50} \text { OR } 0.0316 \ldots \text { OR } 0.032 \mathrm{~mol} \mathrm{dm}^{-3} \checkmark \quad 1 \text { mark }$ THEN 2 APPROACHES: EITHER: Factor that concentration changes by $\begin{aligned} \text { Factor } & =\frac{0.0316 \ldots \ldots}{0.680}=0.0465 \ldots \text { times } \\ \text { OR } \frac{0.680}{0.0316 \ldots .} & =21.5 \ldots . \text { times } \end{aligned}$ Initial rate with diluted acid $\begin{aligned} & =0.0465 \ldots \times 9.52 \times 10^{-4} \text { OR } \frac{9.52 \times 10^{-4}}{21.5 \ldots .} \\ & =4.43 \times 10^{-5}\left(\mathrm{~mol} \mathrm{dm}^{-3} \mathrm{~s}^{-1}\right)^{\checkmark} \end{aligned}$ OR: Rate α concentration (1st order) $\begin{aligned} & k=\frac{\text { rate }}{[\mathrm{HCl}]}=\frac{9.52 \times 10^{-4}}{0.680}=1.4(0) \times 10^{-3} \\ & \text { OR Constant }=\frac{0.680}{9.52 \times 10^{-4}}=714.2857 \ldots \end{aligned}$ Initial rate with diluted acid $\begin{aligned} & =1.4(0) \times 10^{-3} \times 0.0316 \ldots \text { OR } \frac{0.0316 \ldots}{714.2857 \ldots} \\ & =4.43 \times 10^{-5}\left(\mathrm{~mol} \mathrm{dm}^{-3} \mathrm{~s}^{-1}\right)^{\checkmark} \end{aligned}$	3	$\begin{gathered} \mathrm{AO} 3.1 \\ \times 3 \end{gathered}$	Calculator: 0.0316227766 ALLOW 10-1.5 ECF possible from incorrect $\left[\mathrm{H}^{+}\right]$ From unrounded [H^{+}], Calculator: 0.04650408324 From $\left[\mathrm{H}^{+}\right]=\mathbf{0 . 0 3 2}$, Factor $=21.25$ From unrounded [H^{+}], Calculator $=4.427188724 \times 10^{-5}$ From $\left[\mathrm{H}^{+}\right]=0.032$, rate $=4.48 \times 10^{-5}$ ECF possible from incorrect $\left[\mathrm{H}^{+}\right]$ DO NOT ALLOW ECF unless derived from concentration and rate
SUMMARY	M1 $\left[\mathrm{H}^{+}\right]$ $0.0316 \ldots$ OR 0.032 M2 Working 0.0465 OR 21.5 OR 1.4 $\times 10^{-3}$ OR M3 Initial rate Range: $4.4 \times 10^{-5}-4.5 \times 10^{-5} \quad 2$ SF		ds on int	1 mark 1 mark 1 mark

Question

Question	Answer	Marks	AO	Guidance
	ALLOW M3 AND M4 combined e.g. For DO NOT ALLOW M2 for carbocation BUT ALLOW for M3 and/or M4 by ECF, e.g.	For BUT ALLOW for M3 and/or M4 by ECF, e.g.		

Question		Answer	Marks	AO element	Guidance
3		Please refer to the marking instructions on page 6 of this mark scheme for guidance on how to mark this question. Level 3 (5-6 marks) Suggests ALL of the following - Reagents and conditions for $\mathbf{3}$ functional groups - Products for 3 functional groups - Optical isomerism with description and 3D optical isomers shown There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3-4 marks) Suggests two of the following - Reagents and conditions for 2 functional groups - Products for 2 functional groups - Optical isomerism with description OR an attempt to show 3D optical isomers There is a line of reasoning presented with some structure. The information presented is relevant and supported by some evidence. Level 1 (1-2 marks) Suggests two of the following - Reagents and conditions for 1 functional group - Products for $\mathbf{1}$ functional group - Identifies optical isomerism with description OR an attempt to show 3D optical isomers There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant. 0 marks No response or no response worthy of credit.	6	$\begin{gathered} \mathrm{AO} 3.1 \\ \times 3 \\ \\ \mathrm{AO} .2 \\ \times 3 \end{gathered}$	CHECK TOP OF QUESTION FOR RESPONSES Indicative scientific points may include: Stereoisomerism - Optical isomerism identified with description: e.g. chiral centre /non-superimposable mirror images - 3D Optical isomers drawn, e.g. Description is subsumed in 3D diagrams Reactions of ketone/carbonyl e.g. NaBH_{4} HCN OR CN- $/ \mathrm{H}^{+}$(e.g. $\mathrm{NaCN} / \mathrm{H}^{+}$)

Question	Answer	Marks	AO element	Guidance
	Key points to check CHECK TOP OF QUESTION for responses IGNORE CONNECTIVITY in 3D isomer structures - IGNORE bond angles - Wedges needed - ALLOW Some responses will not fit into this exact pattern and a best-fit match may be needed Clear communication Focus on - Clear diagrams of 3D optical isomers - Diagrams of unambiguous structures - Reagents and functional group formed are linked - Communication is more a general feel for the quality of the responses. Slips and minor errors in structures - Do not penalise the odd slip or omission, e.g. An extra C in a chain; a C short in a chain, C shown instead of CH_{2} or skeletal - You need to judge the extent of any slip based on the whole response. Remember that each candidate response is unique.			Reactions of -OH, e.g. $\mathrm{H}^{+} / \mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$ OR $\mathrm{H}_{2} \mathrm{SO}_{4} / \mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ reflux $\mathrm{H}^{+} / \mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-} \mathrm{OR} \mathrm{H}_{2} \mathrm{SO}_{4} / \mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ distil $\mathrm{NaBr} / \mathrm{KBr} / \mathrm{Br}-$ AND acid/ H^{+}OR HBr X = halogen Acid/ H^{+}(catalyst) (e.g. $\mathrm{H}_{2} \mathrm{SO}_{4}$)

Question		Answer	Marks	AO	Guidance
(c)	(ii)	Formula of precipitate $\mathrm{Cu}(\mathrm{OH})_{2} \checkmark$ IGNORE name: copper(II) hydroxide IGNORE name: ammonia Test for ammonia Available only from a reasonable attempt for identifying the gas as NH_{3}, e.g. $\mathrm{NH}_{4}, \mathrm{NH}_{4}{ }^{+}, \mathrm{NH}_{2}$, ammonia, ammonium (Moist/damp) indicator/litmus (paper) turns blue \checkmark Moist/damp NOT required. Initial colour of litmus NOT required but blue is CON	3	$\begin{gathered} \hline \mathrm{AO} 2.3 \\ \times 3 \end{gathered}$	ALLOW Cu(OH) $)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}$ ALLOW charges on Cu AND OH e.g. $\mathrm{Cu}^{2+}\left(\mathrm{OH}^{-}\right)_{2} \checkmark$ DO NOT ALLOW unbalanced charges. e.g. $\mathrm{Cu}\left(\mathrm{OH}^{-}\right)_{2} \times$ DO NOT ALLOW correct test for NH_{3} based on incorrect ID of the gas NO ECF for a test on the wrong gas (has to be test for NH_{3}) DO NOT ALLOW bleaches indicator CON
(c)	(iii)	Reagent $\mathrm{BaCl}_{2} /$ barium chloride (solution) OR Ba($\left.\mathrm{NO}_{3}\right)_{2} /$ barium nitrate (solution) OR Ba${ }^{2+}$ (solution/aq) / barium ions Observation white precipitate/ppt \checkmark Only available from soluble Ba^{2+} reagent ALLOW minor slips in formula of Ba^{2+} reagent, e.g. $\mathrm{BaCl}, \mathrm{BaNO}_{3}$	2	$\begin{gathered} \mathrm{AO} 2.3 \\ \times 2 \end{gathered}$	ALLOW $\mathrm{Ba}(\mathrm{OH})_{2}$ or other soluble Ba^{2+} compounds IGNORE test for other anions provided they do NOT interfere with $\mathrm{SO}_{4}{ }^{2-}$ test e.g. IGNORE addition of $\mathrm{HCl} / \mathrm{HNO}_{3} / \mathrm{H}^{+}$ BUT DO NOT ALLOW $\mathrm{H}_{2} \mathrm{SO}_{4}$ Interferes with $\mathrm{SO}_{4}{ }^{2-}$ test IGNORE $\mathrm{Ag}^{+} / \mathrm{AgNO}_{3}$ after $\mathrm{SO}_{4}{ }^{2-}$ test DO NOT ALLOW before $\mathrm{SO}_{4}{ }^{2-}$ test IGNORE bubbling any gas through limewater IGNORE responses linked to $\mathrm{CrO}_{4}{ }^{2-}$ Not in Tutton's salt that student prepares

Question		Answer	Marks	AO element	Guidance
5	(a)	FIRST CHECK THE ANSWER ON ANSWER LINE If Mass = 318 (mg) award 6 marks Analysis of results $\quad 5$ marks $\begin{aligned} & n(\mathrm{HCl})=0.200 \times \frac{22.35}{1000}=4.47 \times 10^{-3}(\mathrm{~mol}) \\ & \\ & n(\mathrm{NaOH}) \text { remaining in } 25.0 \mathrm{~cm}^{3}=n(\mathrm{HCl}) \\ & n(\mathrm{NaOH}) \text { remaining in } 250 \mathrm{~cm}^{3} \\ & =4.47 \times 10^{-3} \times 10=4.47 \times 10^{-2} \mathrm{OR} 0.0447(\mathrm{~mol}) \\ & n(\mathrm{NaOH}) \text { that reacted with aspirin } \\ & \quad=0.0500-4.47 \times 10^{-2}=5.30 \times 10^{-3}(\mathrm{~mol}) \\ & \text { mass in } 3 \text { tablets }=5.30 \times 10^{-3} \times 180=0.954 \mathrm{~g} \checkmark \\ & \text { Mass in } 1 \text { tablet }=318 \mathrm{mg} \checkmark \end{aligned}$	6	$\begin{gathered} \text { AO2.8 } \\ \times 6 \end{gathered}$	FULL ANNOTATIONS MUST BE USED Common error: Incorrect mean from all 3 titres $=22.6 \mathrm{~cm}^{3}$ CHECK BELOW TITRATION TABLE Use ECF throughout Intermediate values for working to at least 3 SF. ALLOW scaling for 1 aspirin tablet early in calc, e.g. for final 2 marks: $\begin{aligned} & n\left(\text { aspirin) in } 1 \text { tablet }=\frac{5.30 \times 10^{-3}}{3}=1.77 \ldots \ldots \times 10^{-3}(\mathrm{~mol}) \checkmark\right. \\ & \text { Mass in } 1 \text { tablet }= 1.77 \ldots . . \times 10^{-3} \times 180 \end{aligned}=0.318 \mathrm{~g} .$
		COMMON ERRORS: No scaling $\times 10$ $\begin{aligned} & 0.05-4.47 \times 10^{-3} \rightarrow 4.553 \times 10^{-2} \checkmark \\ & 4.553 \times 10^{-2} \times 180 \rightarrow 8.1954 \mathrm{~g} \text { in } 3 \text { tablets } \checkmark \end{aligned}$ $\rightarrow \mathbf{2 7 3 1 . 8} \mathbf{2 7 3 2} / \mathbf{2 7 3 0} \mathbf{~ m g} \text { in } 1 \text { tablet } \checkmark 5 \text { marks }$ No scaling $\times 10$ before subtraction but scaling after $\begin{aligned} & 0.05-4.47 \times 10^{-3} \rightarrow 4.553 \times 10^{-2} \checkmark \\ & 4.553 \times 10^{-2} \times 10 \times 180 \rightarrow 81954 \mathrm{~g} \text { in } 3 \text { tablets } \times \\ & \rightarrow \mathbf{2 7 3 1 8 / 2 7 3 2 0 / 2 7 3 0 0 ~ \mathbf { ~ m g } \text { in } 1 \text { tablet } \checkmark} \end{aligned}$	No s \qquad Omit ------- Mean	action fr 4.47×1 initial tit 5×180 22.60 (u an $=67$ $5-4.52$ 0×10^{-3} 288 mg	

Quest		Answer	Marks	AO element	Guidance
(b)	(i)	Reaction apparatus (Labels NOT required) flask AND upright condenser AND open system at top \checkmark (Could be labelled) Labels AND direction of water flow Pear-shaped/round-bottom flask AND condenser AND water in at bottom and out at top \checkmark Heat NOT required DO NOT ALLOW flask, conical flask, volumetric flask DO NOT ALLOW thermometer DO NOT ALLOW condensing tube as label	2	$\begin{gathered} \mathrm{AO} 3.3 \\ \times 2 \end{gathered}$	For open system, DO NOT ALLOW For open system, ALLOW label. e.g. 'open at top' Ont heat ALLOW line across flask

Question
Question

Question			Answer	Marks	AO	Guidance
6	(a)		$\mathrm{H}-\mathrm{O}-\mathrm{N}$ 104.5° 2 bonded pairs/regions AND 2 lone pairs (around O) AND lone pairs repel more Independent of bond angle $\mathrm{O}-\mathrm{N}-\mathrm{O}$ 120° 3 bonded regions/pairs (around N) Independent of bond angle	4	AO1. 2 AO2. 1 AO1. 2 AO2. 1	Throughout, - IGNORE names of shapes (even if wrong) - IGNORE 'electrons repel' - DO NOT ALLOW 'atoms repel' ALLOW 104-105응 ALLOW Ip for lone pair (of electrons) bp for bonding pair (of electrons) 'bond' for 'bonded pair' IGNORE electron density ALLOW 115-125 ALLOW 3 bonded areas/environments 3 regions/areas of electron density 3 bonded groups ALLOW 2 bonded pairs and 1 double bond OR 2 bonded pairs and 1 bonded region
	(b)	(i)	$\mathrm{Al}_{2} \mathrm{O}_{3}+6 \mathrm{HNO}_{3} \rightarrow 2 \mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}+3 \mathrm{H}_{2} \mathrm{O}$ Any THREE species correct Correct balanced equation DO NOT ALLOW more than 4 species in equation	2	$\begin{aligned} & \mathrm{AO} 2.5 \\ & \mathrm{AO} 2.6 \end{aligned}$	ALLOW multiples IGNORE state symbols (even if wrong) ALLOW ionic equation $\mathrm{Al}_{2} \mathrm{O}_{3}+6 \mathrm{H}^{+} \rightarrow 2 \mathrm{Al}^{3+}+3 \mathrm{H}_{2} \mathrm{O}$ Mark using same criteria

Quest		Answer	Marks	AO	Guidance
(b)	(ii)	Always 5 around N 1st mark: 8 Electrons around N as above 1 single covalent bond, 1 dative covalent bond 1 double bond 2nd mark: 8 electrons around each O AND 6 O electrons around each O Only award 2nd mark if 1st mark awarded NO ECF	2		NOT REQUIRED - Charge ('-') - Brackets - Circles - N and O symbols IGNORE inner shells ALLOW rotated diagram In $\mathrm{N}=\mathbf{O}$ bond, ALLOW sequence ALLOW non-bonding electrons unpaired ALLOW dot and cross labels swapped: i.e. • for O electrons and \times for N electrons

Question		Answer	Marks	AO	Guidance
(c)	(i)	$\mathrm{Au}+4 \mathrm{HCl} \rightarrow 4 \mathrm{H}^{+}+\mathrm{AuCl}_{4}^{-}+3 \mathrm{e}^{-} \checkmark$	1	AO1.2	
(c)	(ii)	Formulae $\begin{aligned} & \mathbf{X}=\mathrm{NO} \\ & \mathbf{Z}=\mathrm{H}_{2} \mathrm{O} \end{aligned}$ Equation Independent from ID of X and Z $\begin{aligned} & \mathrm{HNO}_{3}+3 \mathrm{H}^{+}+3 \mathrm{e}^{-} \rightarrow \mathrm{NO}+2 \mathrm{H}_{2} \mathrm{O} \\ & \mathrm{OR}^{-} \mathrm{NO}_{3}^{-}+4 \mathrm{H}^{+}+3 \mathrm{e}^{-} \rightarrow \mathrm{NO}+2 \mathrm{H}_{2} \mathrm{O} \end{aligned}$ CHECK BELOW ANSWER SPACE FOR RESPONSES	3	$\begin{gathered} \mathrm{AO} 3.1 \\ \times 3 \end{gathered}$	If \mathbf{X} and \mathbf{Z} in wrong order award 1 out of 2 formula marks i.e. $\mathbf{X}=\mathrm{H}_{2} \mathrm{O}$ and $\mathbf{Z}=\mathrm{NO} \quad 1$ mark ALLOW multiples

Quest	ion	Answer	Marks	AO element	Guidance
(e)*		Please refer to the marking instructions on page 6 of this mark scheme for guidance on how to mark this question. Level 3 (5-6 marks) - Reaches a comprehensive conclusion to determine all three correct formulae of D, E AND F - AND constructs most equations with few errors There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3-4 marks) - Reaches a comprehensive conclusion to determine two correct formulae of D, E AND F - AND constructs some equations with some errors There is a line of reasoning presented with some structure. The information presented is relevant and supported by some evidence. Level 1 (1-2 marks) - Determines a correct formula for one of D, E AND F - AND provides some evidence to support the formula There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant. 0 marks No response or no response worthy of credit. EQUATIONS SHOULD BE USED TO INFORM THE COMMUNICATION STRAND See next page for details CHECK TOP OF QUESTION FOR RESPONSES IGNORE CONNECTIVITY FOR F	6	$\begin{gathered} \mathrm{AO} 3.1 \\ \times 3 \\ \\ \mathrm{AO} .2 \\ \times 3 \end{gathered}$	Indicative scientific points may include: Identify of \mathbf{D}, E and F - D: $\mathrm{NiSO}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ OR NiSO $4\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}$ OR NiSO $_{10} \mathrm{H}_{12}$ - $\mathrm{E}: \mathrm{SO}_{2}$ - F: Cyclic diester OR unsaturated ester/acid OR unsaturated acid anhydride OR cyclic acid anhydride

Question	Answer	Marks	AO element	Guidance
	SUMMARY Setting the level For Level 3 (5-6 marks), - All 3 identified: D, E and F - Most equations For Level 2 (3-4 marks), - 2 identified from \mathbf{D}, \mathbf{E} and \mathbf{F} - 2 equations For Level 1 (1-2 marks), - 1 identified from \mathbf{D}, \mathbf{E} and \mathbf{F} - Evidence Evidence to support a formula for Level 1 Molar ratios of D Molar mass of E Molar mass $=2.67 \times 24=64(.08) \mathrm{g} \mathrm{mol}^{-1}$			Equations $\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{Ni}(\mathrm{OH})_{2} \rightarrow \mathrm{NiSO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$ OR $\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{Ni}(\mathrm{OH})_{2}+4 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{NiSO}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ For equation ALLOW NiSO ${ }_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ OR NiSO ${ }_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}$ $\mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{HBr} \rightarrow \mathrm{Br}_{2}+\mathrm{SO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$ OR OR If structure of \mathbf{F} is shown, ALLOW equation using molecular formulae, e.g. $\quad 2 \mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}_{3} \rightarrow \mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{4}+2 \mathrm{H}_{2} \mathrm{O}$

BLANK PAGE

Need to get in touch?

If you ever have any questions about OCR qualifications or services (including administration, logistics and teaching) please feel free to get in touch with our customer support centre.

Call us on
01223553998
Alternatively, you can email us on
support@ocr.org.uk
For more information visit

[]

ocr.org.uk/qualifications/resource-finder
(ocr.org.uk
f Twitter/ocrexams
3y locrexams
in /company/ocr

- locrexams

 UNVVRRTT PRESS \& ASSSSMENT

OCR is part of Cambridge University Press \& Assessment, a department of the University of Cambridge.
For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored. © OCR 2023 Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee. Registered in England. Registered office The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA.

Registered company number 3484466 . OCR is an exempt charity.
OCR operates academic and vocational qualifications regulated by Ofqual, Qualifications Wales and CCEA as listed in their qualifications registers including A Levels, GCSEs, Cambridge Technicals and Cambridge Nationals.

OCR provides resources to help you deliver our qualifications. These resources do not represent any particular teaching method we expect you to use. We update our resources regularly and aim to make sure content is accurate but please check the OCR website so that you have the most up-to-date version. OCR cannot be held responsible for any errors or omissions in these resources.

Though we make every effort to check our resources, there may be contradictions between published support and the specification, so it is important that you always use information in the latest specification. We indicate any specification changes within the document itself, change the version number and provide a summary of the changes. If you do notice a discrepancy between the specification and a resource, please contact us.

Whether you already offer OCR qualifications, are new to OCR or are thinking about switching, you can request more information using our Expression of Interest form.

Please get in touch if you want to discuss the accessibility of resources we offer to support you in delivering our qualifications.

